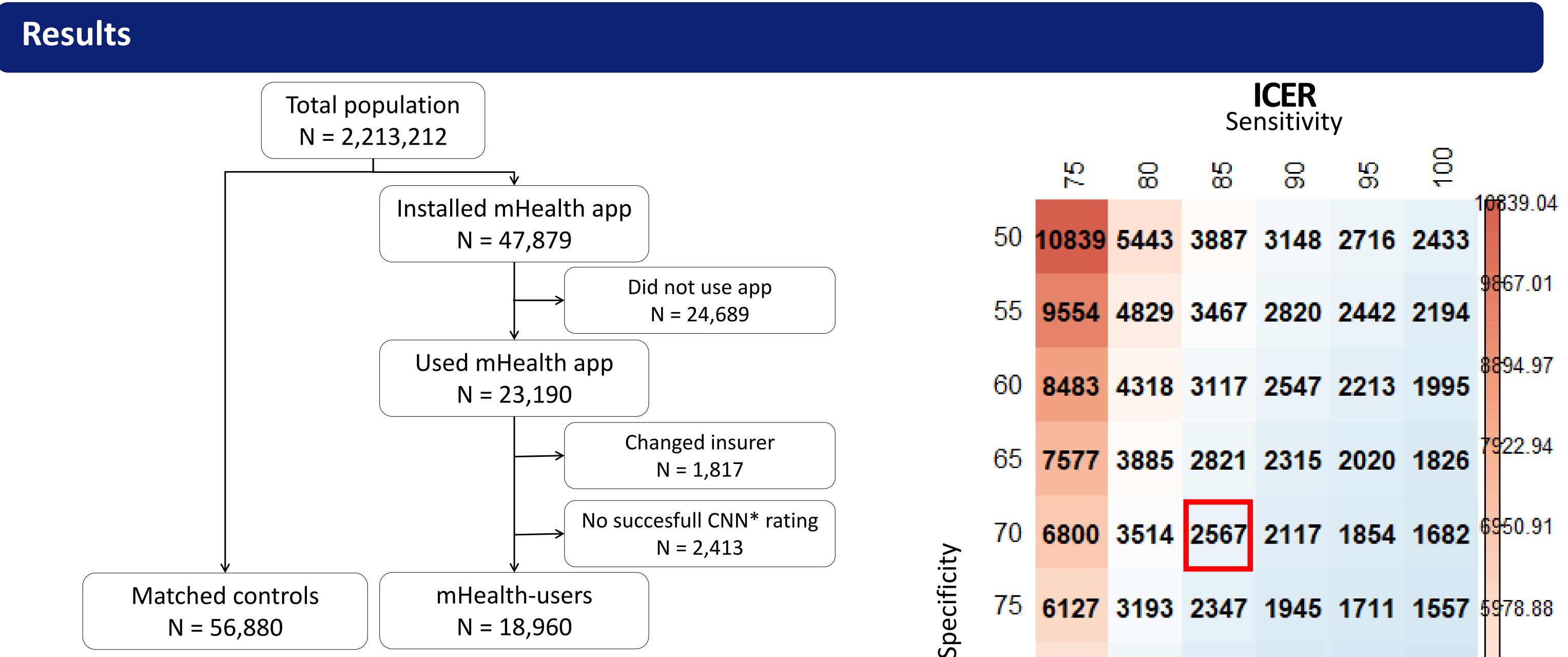


The impact of an artificial intelligence (AI) based app for skin cancer detection: a first clinical practice evaluation in a population-based setting AM Smak Gregoor¹, TE Sangers¹, LB Bakker², LM Hollestein¹, CA Uyl-de Groot², TEC Nijsten¹, M Wakkee¹ **1** Department of Dermatology, Erasmus MC Cancer Institute Rotterdam, The Netherlands. **2** Erasmus School of Health Policy & Management, Erasmus University Rotterdam, The Netherlands.

Introduction & Objective

Methods

Al-based algorithms that can recognize skin cancer based on a photo have been implemented in mobile phone applications (mHealth).



- A retrospective population-based pragmatic study.
- mHealth-users were matched 1:3 to non-mHealth-users.
- Differences in dermatological healthcare consumption were calculated based on claims data available from the year 2019.

This study aims to provide a first glance on the impact of such an mHealth application for skin cancer detection on dermatological healthcare consumption in the Netherlands.

• An early cost-effectiveness analysis was simulated for a range of sensitivities and specificities of the mHealth app. The incremental cost effectiveness ratio (ICER), was calculated using the following formula:

Cost mHealth –Cost standard of care ICER = effectiveness mHealth-effectiveness standard of care

*CNN; Convolutional neural neutwork

Dermatological claims	Controls	mHealth-users	p-value					
	(n = 56,880)	(n = 18,960)						
(Pre)malignancies, % (n)	4.64 (2637)	6.04 (1146)	< 0.001					
Odds Ratio (95% CI)	Ref	1.32 (1.23–1.42)	< 0.001					
Nevi and Benign lesions, % (n)	1.65 (941)	5.88 (1114)	< 0.001					
Odds Ratio (95% CI)	Ref	3.71 (3.39–4.06)	< 0.001					
Unrelated claims, % (n)	4.92 (2800)	5.28 (1001)	0.066					
Odds Ratio (95% CI)	Ref	1.08 (1.00–1.16)	0.066					
Percentages are number of people with a claim per subcategory of claims. P-values are the difference in proportion of claims, calculated using a two proportions z-test or corresponding odds ratio's using Fisher's Exact Test for Count Data.								

55	9554	4829	3467	2820	2442	2194	
<mark>60</mark>	8483	4318	3117	2547	2213	1995 ⁸⁸	94.97
65	7577	3885	2821	2315	2020	1826 ⁷⁹	22.94
70	6800	3514	2567	2117	1854	1682 ⁶⁹	50.91
75	6127	3193	2347	1945	1711	1557 59	78.88
80	5538	2912	2155	1795	1585	1447 50	06.85
85	5018	2664	1985	1663	1474	1351 40	34.82
90	4556	2443	1834	1545	1376		62.79
95	4142	2246	1699	1439	1287	1188	

3770 2068 1577 1344 1208 1119 100

Simulation of the ICER with different combinations of sensitivity and specificity based on healthcare costs for (pre)malignant and benign skin lesions.

2090.76

118.73

Conclusions

Al in mHealth appears to have a positive impact on detecting more skin cancer. This should be balanced against the, for now, stronger increase in care consumption for benign skin lesions. Improvements in accuracy of the AI-based algorithm and a targeted approach in high risk populations may result in a more favorable outcome. A large randomized controlled trial is required for more detailed and definite conclusions on its actual impact.

For questions, contact: **<u>m.wakkee@erasmusmc.nl</u>**